UNDULAR FLOW OF AN EVAPORATING VISCOUS
LIQUID FILM UNDER UNIFORM INJECTION
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The wave profile on the free surface of a thin viscous liquid film flowing along a porous
surface under uniform injection is established here by the asymptotic method which has
been developed in [1, 2].

In view of the growing number of technical applications, much attention is paid since recently to the
study of flowing thin layers (films) of viscous incompressible fluids [3-9]. Under actual conditions at rather
low flow rates already, one notes undular flow modes in the film as its free surface acquires the shape of a
periodic wave with a small amplitude [10, 11]. Injection may change the shape of the free film surface,
which in turn affects the processes of heat and mass transfer, It has been shown in [3], for instance, that
during laminar film condensation the heat transfer rate and the condensation rate both increase during suc-
tion.

We consider a viscous liquid flowing down along a porous wall (y = 0) inclined at an angle ¢ to the
horizontal, through which quantities of the same liquid are injected uniformly at a velocity W (Fig. 1).
The flow, which occurs due to gravity, is assumed steady along the x-axis. In a certain system of refer-
ence coordinates moving at a velocity U, then, the shape of the free surface y = f(x) will remain invariable,
The flow rate of the liguid through any section of the film is also assumed constant,

With the flow rate @ and the mean depth of liquid H as the characteristic quantities, the flow of
liquid can be described by the following dimensionless parameters: the Reynolds number Re =Q /v (v de-
noting the kinematic viscosity of the medium), the Froude number Fr~% = gh®/Q? (g denoting the accelera-
tion of gravity), and the velocity ¢ = UH /Q.

In the system of coordinates moving relative to the porous channe!l wall y = 0 at the dimensionless
velocity ¢ we write the system of dimensionless equations of motion with respect to the flow function ¥ (u
=9y /8y and v = — 8y/3x denoting the respective velocity components along y and x) as follows:

Fig. 1. Schematic diagram of a flowing thin viscous
liquid film and transverse injection.
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Eliminating the pressure P from Egs. (1) and (2) yields
D (A, p) 1
2800 Ly, (3)
Dix,y) ~Re
On the free surface of the liquid y = f(x) the tangential stresses must be zero
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The boundary conditions at the porous wall are written as:
i) =—C — 9 =w. (6)
9y ly=o 0x Jy=0

The stipulation that the flow rate through any section of the film is constant can be expressed as
)
9 4y - —plx, O] =
ay dy - ‘I’ [xi f(x)] ‘P [x: ] q, (7)
&
where q = 1-c represents the dimensionless relative flow rate of liquid in the moving system of coordi-
nates,

Proceeding now by the method of "narrow" bands [12, 13], we will consider the auxiliary problem of
determining the flow function within the region occupied by a liquid at a fixed value of f(x). A change x
- x /¢, with the small parameter ¢ characterizing the "narrowness® of the film, will introduce this small
parameter ¢ into all equations and boundary conditions here, making it feasible to seek the solution to
Eq. (8) in the form of an asymptotic expansion with respect to this parameter:

¢=1T:0+e:pl+s’ﬁz,5¢0 4+ Py -+ P (8
Considering this expansion (8), we have for the zeroth approximation
P _g (9)
oyt
Conditions (4), (6), and (7) in the zeroth approximation will then be
0y ly=rtx) 9y |y=0 0x Jy=o . (10)

Polx, [ ()] —olx, 0] = q.

Since we are interested here in waves with small amplitudes (i.e., f(x) =1 + 7n(x) with function 7(x) smaller
than unity), hence the solution to Eq. (9) with boundary conditions (10) can be represented as

Y= %y3+c—2zy2——cy—wx+cs, (11)

where C; =—3(c + g) + 3(2¢ + 3g)n—9(c + 2am* + OM?); C, = 3(c + Q—3(c + 20N + 3(c + 3gn? + OM?); and C,
is an arbitrary constant. We note that the injection velocity w, as can be seen from solution (11) and
boundary conditions (10), is a small quantity (w = 0(g)); in other words, we consider an undular flow mode
in the case of thin films with a limited injection — not exceeding a specified rate.

For the first approximation we have
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Fig. 2. Shape of the wave profile as a function of the injection velocity w
for ¢ =2.9, Re =23.6, and ¢ =5°% w =0 (1), 1073 (2), 2.5-107% (3).

2

Fig. 3. Wavelength A and the Froude number as functions of the injection
velocity w, for ¢ = 2.9, Re = 23.6, and o = 5°.

and the boundary conditions
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I, (x, y) is the particular solution to the nonhomogeneous Eq. (12) (not shown here hecause of its unwieldi-
ness), 1y =dn /dx, and C; is an arbitrary constant.

For the second approximation we have
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I,(x, y) is the particular solution to the nonbomogeneous Eq. (15) (not shown here because of its unwieldi-
ness), nxx =d% /dx? and C, is an arbitrary constant; Cg is not needed for further calculations,

Thus, we have a solution to the auxiliary problem in terms of § as a function of the yet unknown
quantity f(x) and, in order to determine the latter, we need now the boundary condition (5)., Differentiating
Eqg. (5) along the free surface, we can obtain
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within the necessary accuracy, where 9P/ 9x and 9P /9y from Egs. (1) and (2) respectively are
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Inserting (19) into (18), with the values of the constants C,, C,, and C, just determined and also consider-
ing that g = 1—~c¢, we obtain a second-order ordinary differential equation in 7(x):
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The parameters in the periodic solution to equations of the (20) kind can, for small values of the
Reynolds number, be expressed in terms of the coefficients in Eq. (20) [13]. It has been shown in {11, 13]
that for the undular mode in the case of a thin viscous liquid film the dimensionless velocity ¢ is almost
three times higher than the mean velocity of plane-parailel flow, from which follows that A; < 0, A, > 0,
A;>0, and A, > 0. Considering this, we have the following limits for the injection velocity:

1
0 &L — , 21)
<w<<Re (

and this range should be regarded as the validity criterion for applying the method of "narrow" bands to
the given flow problem.

With the Reynolds number Re of the film flow, the inclination angle « of the wall, and the injection
velocity w of the liquid given according to (21), the solution to Eq. (20) will relate the shape and the wave-
length of the profile to the injection velocity w. Based on calculations, the shape of the wave profile as a
function of the parameter w is shown in Fig. 2 and the wavelength as a function of the parameter w is shown
in Fig. 3. We note that a higher injection velocity, as is evident from Figs, 2 and 3, will resultin a
smaller wave amplitude and a shorter wavelength on the film surface with the film becoming thicker.

NOTATION

is the injection velocity;
is the wave velocity;
is the flow rate;
is the depth of liquid film;
is the dimensionless cartesian coordinates;
e is the Reynolds number;
is the kinematic viscosity;
r is the Froude number;
is the acceleration of gravity;
is the dimensionless wave velocity;
is the flow function;
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u, v are the velocity components along x and y respectively;
P is the pressure;
q is the dimensionless flow rate;
w is the dimensionless injection velocity;
g is the small parameter;
Ciy Cyy v v, Gy are the unknown functions;
A Ay oL, A are the constants;
Im,, I are the particular solutions to nonhomogeneous equations;
A is the wavelength;
o is the inclination angle of porous wall;
f(x), nx) are the shape functions of the undular film surface,
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